Bayesian Regression (1) Objective Prior
Based on the lecture “Bayesian Modeling (2024-1)” by Prof. Yeo Jin Chung, Dept. of AI, Big Data & Management, College of Business Administration, Kookmin Univ.
Liklihood Function Transformation
-
다중선형회귀모형의 우도 함수:
\[\begin{aligned} \mathcal{L}(\mathbf{b}, \sigma^2) &= (2\pi\sigma^2)^{-n/2} \cdot \exp{\left[-\frac{1}{2\sigma^2}\cdot(\mathbf{y}-\mathbf{X}\mathbf{b})^{T}(\mathbf{y}-\mathbf{X}\mathbf{b})\right]} \quad (\because \mathbf{y} \sim \mathcal{N}(\mathbf{X}\mathbf{b}, \sigma^2\mathbf{I}))\\ &\propto (\sigma^2)^{-n/2} \cdot \exp{\left[-\frac{1}{2\sigma^2}\cdot(\mathbf{y}-\mathbf{X}\mathbf{b})^{T}(\mathbf{y}-\mathbf{X}\mathbf{b})\right]} \end{aligned}\] -
$(\mathbf{y}-\mathbf{X}\mathbf{b})^{T}(\mathbf{y}-\mathbf{X}\mathbf{b})$ 변형:
\[\begin{aligned} (\mathbf{y}-\mathbf{X}\mathbf{b})^{T}(\mathbf{y}-\mathbf{X}\mathbf{b}) &= \left[(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}}) + (\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b})\right]^{T}\left[(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}}) + (\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b})\right]\\ &= (\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}}) + (\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b})^{T}(\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b}) + 2 \cdot (\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b})\\ \\ (\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b})^{T}(\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b}) &= (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\\ 2 \cdot (\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{X}\hat{\mathbf{b}}-\mathbf{X}\mathbf{b}) &=0\\ \\ \therefore (\mathbf{y}-\mathbf{X}\mathbf{b})^{T}(\mathbf{y}-\mathbf{X}\mathbf{b}) &= (\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}}) + (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\\ \end{aligned}\] -
우도 함수에 대입:
\[\begin{aligned} \mathcal{L}(\mathbf{b}, \sigma^2) &\propto (\sigma^2)^{-n/2} \cdot \exp{\left[-\frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})\right]} \cdot \exp{\left[-\frac{1}{2\sigma^2}(\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\right]}\\ \end{aligned}\] -
잔차 분산 및 자유도 정의:
\[\begin{aligned} s^{2} &= \frac{1}{\nu} \cdot RSS\\ &= \frac{1}{\nu} \cdot (\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})^{T}(\mathbf{y}-\mathbf{X}\hat{\mathbf{b}})\\ \nu &= n-k \end{aligned}\] -
우도 함수에 대입:
\[\begin{aligned} \therefore \mathcal{L}(\mathbf{b}, \sigma^{2}) &\propto (\sigma^{2})^{-\nu/2} \cdot \exp{\left[-\frac{1}{2\sigma^{2}}\cdot \nu s^{2}\right]} \times (\sigma^{2})^{-(n-\nu)/2} \cdot \exp{\left[-\frac{1}{2\sigma^{2}}\cdot (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\right]} \end{aligned}\]
Prior Determination
\[\begin{aligned} p(\mathbf{b}, \sigma^{2}) &= p(\mathbf{b} \mid \sigma^{2}) \cdot p(\sigma^{2})\\ &= p(\mathbf{b}) \cdot p(\sigma^{2}) \quad (\because \text{i.i.d})\\ &= 1 \times \frac{1}{\sigma^{2}} \end{aligned}\]
-
Jacobian Change of $\sigma^2$ for Relaxing Range Constraints
\[\begin{aligned} \psi &= \log{\sigma^{2}}\\ \therefore p(\sigma^{2}) &= p(\psi) \cdot \frac{1}{\sigma^{2}} \end{aligned}\] -
Non-informative Prior Determination of $\beta, \psi$
\[\mathbf{b}, \psi \sim \text{Uniform}(0,1)\] -
Jeffreys Prior of $\sigma^{2}$
\[\begin{aligned} p(\sigma^{2}) = p(\psi) \cdot \frac{1}{\sigma^{2}} = \frac{1}{\sigma^{2}} \end{aligned}\]
Posterior Estimation
\[\begin{aligned} p(\mathbf{b}, \sigma^{2} \mid \mathcal{D}) &\propto \mathcal{L}(\mathbf{b}, \sigma^{2}) \cdot p(\mathbf{b}, \sigma^{2})\\ \ &\propto (\sigma^{2})^{-\nu/2} \cdot \exp{\left[-\frac{1}{2\sigma^{2}}\cdot \nu s^{2}\right]} \times (\sigma^{2})^{-(n-\nu)/2} \cdot \exp{\left[-\frac{1}{2\sigma^{2}} \cdot (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\right]} \times \frac{1}{\sigma^{2}}\\ &= (\sigma^{2})^{-\nu/2-1} \cdot \exp{\left[-\frac{1}{2\sigma^{2}}\cdot \nu s^{2}\right]} \times (\sigma^{2})^{-(n-\nu)/2} \cdot \exp{\left[-\frac{1}{2\sigma^{2}} \cdot (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\right]} \end{aligned}\]
-
Marginal Posterior of $\sigma^2$ is Inverse Chi-Squared Distribution
\[\begin{gathered} f(\sigma^2 \mid \nu,s^2) =(\sigma^2)^{-\nu/2-1} \cdot \exp{\left[-\frac{1}{2\sigma^2}\cdot \nu s^2\right]}\\ \therefore \sigma^2 \mid \mathcal{D} \sim \text{Inv-}\chi^2(\nu,s^2) \end{gathered}\] -
Conditional Posterior of $\beta$ given $\sigma^2$ is Normal Distribution
\[\begin{gathered} f(\mathbf{b} \mid \hat{\mathbf{b}}, \mathbf{V}_{\beta}) = (\sigma^2)^{-(n-\nu)/2} \cdot \exp{\left[-\frac{1}{2\sigma^2}\cdot (\mathbf{b} - \hat{\mathbf{b}})^{T}(\mathbf{X}^{T}\mathbf{X})(\mathbf{b} - \hat{\mathbf{b}})\right]}\\ \therefore \mathbf{b} \mid \sigma^{2}, \mathcal{D} \sim \mathcal{N}(\hat{\mathbf{b}}, \sigma^2\mathbf{V}_{\beta}) \end{gathered}\]- $\hat{\mathbf{b}}=(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$ : $\mathbf{b}$ 의 최우추정량
- $\sigma^2\mathbf{V}_{\beta}=\sigma^2(\mathbf{X}^{T}\mathbf{X})^{-1}$ : $\mathbf{b}$ 의 공분산 행렬
This post is licensed under
CC BY 4.0
by the author.