Deep Learning based Collaborative Filtering
Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM computing surveys (CSUR), 52(1), 1-38.
MLP
- Merit
- User, Item Representation Learning
- Matching function learning
- Modeling nonlinear interactions between users and items
ID Embedding
-
ID Embedding: Embedding user and item identifiers into a low-dimensional vector space
-
NCF
: ID Embedding based Latent Factor Model
(Linear and Non-Linear Matching Function Ensemble)- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S.
(2017, April).
Neural collaborative filtering.
In Proceedings of the 26th international conference on world wide web (pp. 173-182).
- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S.
History Embedding
-
History Embedding: Generate each user and item expressions based on past interaction history
- by aggregating the raw representations of one entity with which the another entity interacted
- by reducing the dimensionality of the user-item interaction matrix and its transpose
DMF
: History Embedding based Latent Factor Model
(Representation Learning)- Xue, H. J., Dai, X., Zhang, J., Huang, S., & Chen, J.
(2017, August).
Deep matrix factorization models for recommender systems.
In IJCAI (Vol. 17, pp. 3203-3209).
- Xue, H. J., Dai, X., Zhang, J., Huang, S., & Chen, J.
DeepCF
: History Embedding based Latent Factor Model
(Representation Learning and Matching Function Learning Ensemble)- Deng, Z. H., Huang, L., Wang, C. D., Lai, J. H., & Yu, P. S.
(2019, July).
Deepcf: A unified framework of representation learning and matching function learning in recommender system.
In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 61-68).
- Deng, Z. H., Huang, L., Wang, C. D., Lai, J. H., & Yu, P. S.
J-NCF
: History Embedding based Latent Factor Model
(Representation Learning and Matching Function Learning Serial)- Chen, W., Cai, F., Chen, H., & Rijke, M. D.
(2019).
Joint neural collaborative filtering for recommender systems.
ACM Transactions on Information Systems (TOIS), 37(4), 1-30.
- Chen, W., Cai, F., Chen, H., & Rijke, M. D.
Dual Embedding
-
Dual Embedding: Use both ID Embedding and History Embedding
DELF
: Dual Embedding based Latent Factor Model
(Ensemble with separate ID embedding and history embedding)- Cheng, W., Shen, Y., Zhu, Y., & Huang, L.
(2018, July).
DELF: A dual-embedding based deep latent factor model for recommendation.
In IJCAI (Vol. 18, pp. 3329-3335).
- Cheng, W., Shen, Y., Zhu, Y., & Huang, L.
DNCF
: Dual Embedding based Latent Factor Model
(Ensemble combining ID embedding and history embedding)- He, G., Zhao, D., & Ding, L.
(2021).
Dual-embedding based neural collaborative filtering for recommender systems.
arXiv preprint arXiv:2102.02549.
- He, G., Zhao, D., & Ding, L.
Semi-Dual Embedding
-
Semi-Dual Embedding: Apply dual embedding to only one side of the user or item
-
DRNet
: User Dual Embedding- Ji, D., Xiang, Z., & Li, Y.
(2020).
Dual relations network for collaborative filtering.
IEEE Access, 8, 109747-109757.
- Ji, D., Xiang, Z., & Li, Y.
Distance Embedding
-
Distance Embedding: Calculate Similarity through distance, not inner product, outer product, or concatenation
-
DDFL
: Distance Embedding based Latent Factor Model- Shah, S. T. U., Li, J., Guo, Z., Li, G., & Zhou, Q.
(2020, September).
DDFL: a deep dual function learning-based model for recommender systems.
In International Conference on Database Systems for Advanced Applications (pp. 590-606).
Cham: Springer International Publishing.
- Shah, S. T. U., Li, J., Guo, Z., Li, G., & Zhou, Q.
AutoEncoder
- Merit
- Restore the user-item interaction matrix
- Dimensionality Reduction of the user-item interaction matrix
- Feature Extraction
AutoRec
: AutoEncoder Application- Sedhain, S., Menon, A. K., Sanner, S., & Xie, L.
(2015, May).
Autorec: Autoencoders meet collaborative filtering.
In Proceedings of the 24th international conference on World Wide Web (pp. 111-112).
- Sedhain, S., Menon, A. K., Sanner, S., & Xie, L.
CDAE
: Denoising AutoEncoder Application- Wu, Y., DuBois, C., Zheng, A. X., & Ester, M.
(2016, February).
Collaborative denoising auto-encoders for top-n recommender systems.
In Proceedings of the ninth ACM international conference on web search and data mining (pp. 153-162).
- Wu, Y., DuBois, C., Zheng, A. X., & Ester, M.
VACF
: Variational AutoEncoder Application- Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T.
(2018, April).
Variational autoencoders for collaborative filtering.
In Proceedings of the 2018 world wide web conference (pp. 689-698).
- Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T.
CNN
- Merit
- Modeling interdimensional high-level interactions between users and items
ConvNCF
: Modeling interdimensional high-level interactions- He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S.
(2018).
Outer product-based neural collaborative filtering.
arXiv preprint arXiv:1808.03912.
- He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S.
COMET
: Modeling interdimensional high-level interactions- Lin, Z., Feng, L., Guo, X., Zhang, Y., Yin, R., Kwoh, C. K., & Xu, C.
(2023).
Comet: Convolutional dimension interaction for collaborative filtering.
ACM Transactions on Intelligent Systems and Technology, 14(4), 1-18.
- Lin, Z., Feng, L., Guo, X., Zhang, Y., Yin, R., Kwoh, C. K., & Xu, C.
Attention Mechanism
- Merit
- Select important information and remove noise
DACR
: History Embedding based Latent Factor Model Assist.- Cui, C., Qin, J., & Ren, Q.
(2022).
Deep collaborative recommendation algorithm based on attention mechanism.
Applied Sciences, 12(20), 10594.
- Cui, C., Qin, J., & Ren, Q.