Post

Deep Learning based Collaborative Filtering

Zhang, S., Yao, L., Sun, A., & Tay, Y.
(2019).
Deep learning based recommender system: A survey and new perspectives.
ACM computing surveys (CSUR), 52(1), 1-38.

MLP


  • Merit
    • User, Item Representation Learning
    • Matching function learning
    • Modeling nonlinear interactions between users and items

ID Embedding

  • ID Embedding: Embedding user and item identifiers into a low-dimensional vector space

    01

  • NCF: ID Embedding based Latent Factor Model
    (Linear and Non-Linear Matching Function Ensemble)

    • He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S.
      (2017, April).
      Neural collaborative filtering.
      In Proceedings of the 26th international conference on world wide web (pp. 173-182).

History Embedding

  • History Embedding: Generate each user and item expressions based on past interaction history

    02

    • by aggregating the raw representations of one entity with which the another entity interacted
    • by reducing the dimensionality of the user-item interaction matrix and its transpose
  • DMF: History Embedding based Latent Factor Model
    (Representation Learning)
    • Xue, H. J., Dai, X., Zhang, J., Huang, S., & Chen, J.
      (2017, August).
      Deep matrix factorization models for recommender systems.
      In IJCAI (Vol. 17, pp. 3203-3209).
  • DeepCF: History Embedding based Latent Factor Model
    (Representation Learning and Matching Function Learning Ensemble)
    • Deng, Z. H., Huang, L., Wang, C. D., Lai, J. H., & Yu, P. S.
      (2019, July).
      Deepcf: A unified framework of representation learning and matching function learning in recommender system.
      In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 61-68).
  • J-NCF: History Embedding based Latent Factor Model
    (Representation Learning and Matching Function Learning Serial)
    • Chen, W., Cai, F., Chen, H., & Rijke, M. D.
      (2019).
      Joint neural collaborative filtering for recommender systems.
      ACM Transactions on Information Systems (TOIS), 37(4), 1-30.

Dual Embedding

  • Dual Embedding: Use both ID Embedding and History Embedding

    03

  • DELF: Dual Embedding based Latent Factor Model
    (Ensemble with separate ID embedding and history embedding)
    • Cheng, W., Shen, Y., Zhu, Y., & Huang, L.
      (2018, July).
      DELF: A dual-embedding based deep latent factor model for recommendation.
      In IJCAI (Vol. 18, pp. 3329-3335).
  • DNCF: Dual Embedding based Latent Factor Model
    (Ensemble combining ID embedding and history embedding)
    • He, G., Zhao, D., & Ding, L.
      (2021).
      Dual-embedding based neural collaborative filtering for recommender systems.
      arXiv preprint arXiv:2102.02549.

Semi-Dual Embedding

  • Semi-Dual Embedding: Apply dual embedding to only one side of the user or item

  • DRNet: User Dual Embedding

    • Ji, D., Xiang, Z., & Li, Y.
      (2020).
      Dual relations network for collaborative filtering.
      IEEE Access, 8, 109747-109757.

Distance Embedding

  • Distance Embedding: Calculate Similarity through distance, not inner product, outer product, or concatenation

  • DDFL: Distance Embedding based Latent Factor Model

    • Shah, S. T. U., Li, J., Guo, Z., Li, G., & Zhou, Q.
      (2020, September).
      DDFL: a deep dual function learning-based model for recommender systems.
      In International Conference on Database Systems for Advanced Applications (pp. 590-606).
      Cham: Springer International Publishing.

AutoEncoder


04

  • Merit
    • Restore the user-item interaction matrix
    • Dimensionality Reduction of the user-item interaction matrix
    • Feature Extraction
  • AutoRec: AutoEncoder Application
    • Sedhain, S., Menon, A. K., Sanner, S., & Xie, L.
      (2015, May).
      Autorec: Autoencoders meet collaborative filtering.
      In Proceedings of the 24th international conference on World Wide Web (pp. 111-112).
  • CDAE: Denoising AutoEncoder Application
    • Wu, Y., DuBois, C., Zheng, A. X., & Ester, M.
      (2016, February).
      Collaborative denoising auto-encoders for top-n recommender systems.
      In Proceedings of the ninth ACM international conference on web search and data mining (pp. 153-162).
  • VACF: Variational AutoEncoder Application
    • Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T.
      (2018, April).
      Variational autoencoders for collaborative filtering.
      In Proceedings of the 2018 world wide web conference (pp. 689-698).

CNN


  • Merit
    • Modeling interdimensional high-level interactions between users and items
  • ConvNCF: Modeling interdimensional high-level interactions
    • He, X., Du, X., Wang, X., Tian, F., Tang, J., & Chua, T. S.
      (2018).
      Outer product-based neural collaborative filtering.
      arXiv preprint arXiv:1808.03912.
  • COMET: Modeling interdimensional high-level interactions
    • Lin, Z., Feng, L., Guo, X., Zhang, Y., Yin, R., Kwoh, C. K., & Xu, C.
      (2023).
      Comet: Convolutional dimension interaction for collaborative filtering.
      ACM Transactions on Intelligent Systems and Technology, 14(4), 1-18.

Attention Mechanism


  • Merit
    • Select important information and remove noise
  • DACR: History Embedding based Latent Factor Model Assist.
    • Cui, C., Qin, J., & Ren, Q.
      (2022).
      Deep collaborative recommendation algorithm based on attention mechanism.
      Applied Sciences, 12(20), 10594.
This post is licensed under CC BY 4.0 by the author.